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Numerical optimization methods based on thermodynamic concepts are extended to the 
case of continuous multidimensional parameter spaces. Techniques which allow this strategy 
to be implemented efficiently and reliably, inciuding a self-regulatory mechanism for choosing 
the random step distribution, are described. The method is applied to a set of standard global 
minimization problems, and to a typical non-linear least-squares functional fitting problem. 
(E: 1984 Academic Press, Inc. 

I. INTRODUCTION 

Recently, Kirkpatrick et al. [ 1 ] (KGV) have pointed out a fruitful connection 
between statistical mechanics and problems of combinatorial optimization. Physical 
systems, they noted, may be coaxed into a minimum energy configuration, such as 
that of a crystal, by a slow annealing process. The reduction of the temperature 
confines the system to a smaller and smaller region of phase space, but is carried out 
slowly enough to allow the system to pass out of metastable local energy minima. In 
this way, the system arrives at the global minimum configuration, which may occupy 
a minute fraction of the original phase space. Just as Metropolis Monte Carlo 
computer calculations can be used to simulate such a physical minimization process 
[2], they pointed out, so can they be used to solve arbitrary numerical optimization 
problems in which one searches for a global minimum of some function (analogous 
to energy) defined over some multivariate parameter space (analogous to physical 
degrees of freedom). This simulated annealing approach to optimization has already 
proven to be a powerful numerical tool [l] and is an elegant example of the ability of 
physical concepts to inform other fields of science. 

KGV have applied this approach to a variety of combinatorial problems, such as 
the traveling salesman problem and computer circuit design problems. In these cases, 
the free parameters take on discrete values; the “steps” of the Monte Carlo random 
walk correspond to permutations in the list of cities to be visited, interchanges of 
circuit elements, or other discrete operations. While such combinatorial optimization 
problems are certainly of wide applicability, there is also a large variety of problems 
which involve minimization with respect to continuous parameters. For example, if 
one desires to fit a function to a sum of exponentials (or some other parametrized 
functions), the choice of the decay constants is an optimization problem. Continuous 
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global optimization problems also frequently arise in many other contexts, including 
engineering design, econometrics, data analysis, etc. Traditional local minimization 
methods, such as Newton-Raphson or quasi-Newton local descent approaches [3], 
can suffer severely from trapping in local minima for such problems. 

The principal complication introduced in going from the discrete to the continuous 
application of Monte Carlo simulated annealing is that the choice of the random 
steps becomes more subtle. In general, the optimal magnitude and directions of the 
vector steps are not known in advance. Steps which are too small will be very inef- 
ficient in exploring the phase space; steps which are too large will always be rejected. 
If the function minimum lies in a highly anisotropic valley, steps which explore in 
directions perpendicular to the valley axis are generally wasted. Finally, the size of 
the steps should shrink as the temperature is reduced and the volume of accessible 
phase space shrinks. The principal innovation introduced here is a self-regulatory 
mechanism for the step distribution which automatically insures that an efficient 
choice of step size and anisotropy is maintained throughout the anneal. 

The plan of the paper is as follows. In Section II we review the Metropolos Monte 
Carlo algorithm, show how it can be applied to continuous optimization, and 
describe the proposed step distribution self-regulation mechanism. Application is 
made in Section III to a family of standard continuous global optimization problems. 
Because the performance of the best previously available global optimization 
algorithms is already tabulated in the literature for this set of problems [4], we can 
make a direct comparison and show that the present method is quite comparable to 
these in efficiency. In Section IV we illustrate how the Monte Carlo annealing 
approach can be used to solve non-linear least-squares fitting problems. The 
particular problem illustrated here is the fitting of a radial function to a sum of 
Gaussians. This problem arose in the context of constructing potentials for electronic 
band structure calculations, but the approach is equally applicable to any functional 
fitting problem. Finally, Section V contains a summary and conclusions. 

II. METHOD 

Consider a function E(x,, x1,..., x,) = E(x) defined over an n-dimensional 
continuous parameter space. The problem is to minimize E with respect to x, where E 
may be the energy of a physical system, the error in a fitting problem, or any other 
iiobjective function.” The Metropolis Monte Carlo algorithm [2] proceeds by 
choosing an initial starting point x,, and making random steps Ax. At each step, the 
change 

AE = E(x + Ax) - E(x) (1) 

in the objective function is evaluated. If AE is negative, the step is accepted. If AE is 
positive, the step is accepted with a probability 

p = exp[--dE/T]. (2) 
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The series of accepted steps then generates a random walk which explores the 
parameter space, and which at long times is governed by the probability distribution 
function 

P(x) = + exp [-X(x)/T] (3) 

where P(x) d”x is the probability that the walk will be in the volume dnx on any 
given step at long times, and the normalization constant or “partition function” Z is 
given by 

Z = f d”x exp[-E(x)/?-]. (4) 

The parameter T plays the role of temperature; as T is decreased slowly: the volume 
O(T) of phase space with non-negligible P(x) shrinks until the system is eventuaily 
forced to “freeze” or “anneal” into the configuration of lowest E. If the anneal is 
carried out slowly enough, the system will avoid getting trapped in locai minima. 
because Eq. (2) does allow steps which increase E temporarily to get over a barrier 
into a new local (or global) minimum. 

A natural way to choose the random steps is to call a random number generator n 
times to generate the numbers (u,, u2 ,..., u,) where each ui is chosen independently 
from the interval r-v”?, \/s] (’ i.e., with zero mean and unit variance). The resulting 
vector u occurs with a probability density g(u) which is constant inside a hypercube 
of volume (2 ~3)” and zero outside. We then choose the step Ax according to 

Ax=Q.u (5) 

where the matrix Q controls the step distribution. The simplest choice would be 
Qij = ~6ij which generates an isotropic distribution with RMS average step length 
u.L~. In general we can characterize the step distribution due to Q by the covariance 
matrix 

Inverting the procedure, we can generate random steps with any desired covariance 
matrix s by solving 

for Q, e.g., via Choleski decomposition, and then using Eq. (5) to generate the Ax’s 
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In order to implement the algorithm, we need a recipe for reducing T, and for 
modifying the covariance matrix s, as a functin of time into the anneal. The efficiency 
of the algorithm will depend strongly on how this is done. 

We use a simple schedule for reducing T: carry out M steps at To, then M steps at 
xTT,,, then M more at &To, etc. The initial temperature may be set equal to the 
variance of random sample of E(x)‘s if no other information is available. The 
geometric temperature reduction factor, 0 < xr < 1, should be chosen by trial and 
error; xT too small will cause trapping in local minima, while xr too large will 
unnecessarily waste computer time. 

The algorithm for choosing the covariance matrix s is more complicated. It should 
be chosen so that on a given set of M steps, the random walk more or less explores 
the entire extent of the available phase space Q(T), which we may rather fuzzily 
define to be 

Q(r> = ix I E(x) -Emin 5 T}* (8) 

If the steps are too small, almost all steps will be accepted; if too large, almost all will 
be rejected. In either case? there is very little information gained per step. The optimal 
efficiency will be obtained with the optimal rate of information gain, i.e., when 
approximately half of the steps are accepted. Moreover, the “shape” of s is important; 
if we think of the tensor s as describing an ellipsoid, the ellipsoid should more or less 
match the shape of Q(T). For example, in the quadratic region of a minimum, we 
should have s proportional to the inverse of the Hessian, 

If the axes of s are poorly aligned with the topography of E(x), much time will be 
wasted exploring fruitless directions of search in phase space. 

The method we propose is based on using the excursions of the random walk itself 
as a measure of the local topography. At the end of the Zth set of M steps, we 
calculate the first and second moments of the walk segment: 

(11) 

where x(~;‘) is the value of x on the m th step of the Ith set. Unlike s, which describes 
the probability distribution of the individual trial steps, S describes the shape of an 
actual segment of the walk. For a free random walk, i.e., one in which no steps are 
rejected, we would expect on average that 

(Sg,) = pm”‘. (14 
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To be precise, the brackets indicate an average over the nM random variables dxi”“’ 
which generate this segment of the walk. A straightforward calculation gives /3 = i for 
the arithmetic average. We then propose to choose s for the next iteration according 
to the prescription 

so that 

(Sgy’) =x,s(? 

(13) 

(i4j 

The “growth factor” xs is chosen > 1 (typically xs = 3) so that a free random walk on 
the (I + 1)th set would cover, on average, xi” times as much ground in each 
direction as on the previous iteration. In fact we have used a p based on a geometric 
average, since the size of the walk after many free sets is really a product, rather than 
a sum. of the random growth factors. A one-dimensional numerical calculation gives 
,8 = 0.11; this value has been adopted. To review the algorithm, then, the step size 
di.stribution is recalculated at the end of each set of M steps using Eqs. (IO), (i I,)? 
and (13), and is implemented on the next set using Eqs. (7) and (5). 

The result of this procedure is illustrated schematically in Fig. 1. Suppose that the 
initial s is too small, so that at first all steps are small and almost all are accepted. 
Then Eqs. (12) and (14) apply and the size of the region covered by the walk grows 
by xf:I on each iteration. Eventually the walk grows to the size of Q(r) and starts 
hitting the walls imposed by E(x) (1 = 6 in Fig. 1 j; at this point a large nlumber of 
steps begin to be rejected. Now S, and therefore s, begin to reflect the shape of Q(r) 
and Eq. (12) no longer holds. As T is reduced, the walk is constrained to -Q(r) as it 

E 

FIG. 1. Schematic illustration of random walk distribution during an anneal. Arrows indicate extent 
of random walk of the Ith set of steps. 
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shrinks, and s is automatically maintained at a size appropriate to Q(T). Moreover, if 
Q(T) is highly anisotropic, the random walks will be forced (by rejected steps) to 
have large excursions in the free directions and will be highly constrained in other 
directions; this will reflect itself in S and hence in s, so that on subsequent sets the 
search will be primarily along the free directions. In other words, s automatically 
adapts itself to the local topography of E(x). 

In practice, M should be chosen large enough so that the random walk on each set 
is long enough to generate reasonable statistics for Eq. (11). At a minimum we 
require M > rz; otherwise S is singular. In practice, we choose M,z 1%; empirically 
this works well for small IZ, e.g., IZ 5 8. For large-dimensional systems, larger values 
of M appear to be needed to get good statistics for the shape of S. Ifs cc I in Eq. (12) 
we expect on average Srree CC I, but as S has y1 eigenvalues the chances are that one or 
more will be anomalously large or small for large n. The small eigenvalues are 
troublesome, because the progress of the random walk is arrested in the direction 
corresponding to the eigenvector. Several approaches to this problem present them- 
selves. One could choose 

where the damping constant 0 < c1 < 1 controls the rate at which information from S 
is folded into s. If the objective function is known to be fairly well behaved, one could 
require s to remain isotropic, 

s(l+l) =i& [det S(f)]l/n 1 

or, more generally, aligned with the Cartesian axes: 

(15b) 

The brute force solution is just to increase M. We have not carried out careful tests to 
determine which strategy is the most generally effective. 

The uniform annealing schedule embodied by a constant xr may not be the most 
efficient procedure; often there is a crucial temperature regime in which slow 
annealing will help to choose between local minima. KGV suggest that the “specific 
heat” 

c(T) = $ (E(T)) (16) 

(where the brackets indicate a themal avarage, i.e., an average over steps of the 
walk), or equivalently 

C(T) = + [(E2) - WI (17) 
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should be used as an indicator of such a temperature regime [I]. By the statistical 
mechanics analogy, a peak in C(T) indicates that the configuration is becoming 
ordered, i.e., frozen into a minimum. Slower annealing in this temperature regime can 
be used to insure that the walk is not trapped in this minimum unless it is the global 
minimum. Note that for reasonable statistics, Eq. (17), and not the finite difference 
approximation to Eq. (16), should be used. 

FinaHy, one needs to know when to stop the algorithm. For this purpose we 
compute (Ej and Emin for each set of M steps, and stop if 

(E> -Emin < rl 
(E> ’ 

(18) 

For typical applications we use r = 10-j. We find that the difference between ~5,~~~ 
and the true local minimum is generally much smaller than this for small-dimensional 
problems, i.e.: q is a conservative error estimate. Some efficiency could perhaps be 
gained by stopping earlier and going over to a local minimizer such as a quasi- 
Newton [ 3 ] or simplex [5] algorithm, but we have not done so. 

III. APPLICATION TO STANDARD OPTIMIZATION PROBLEMS 

A survey of known global optimization routines and their efficiency as measured 
on a standard set of seven global optimization problems has recently been published 
[4]. This survey represents the results of several years of international cooperation by 
a variety of research groups, oriented towards identifying the best algorithms 
available. For the sake of comparison, we have applied our method to the same set of 
problems, and used the same measures of efficiency in analyzing the results. The 
seven functions and our choice of search parameters for them are indicated in 
Table I. The precise definition of each function, and the volume of parameter space to 
be searched (in all cases a finite hypercube), may be found in Ref. [4]. 

In all cases we use M= 15n, xs = 3, q = 10P3. r,, and xT are the principal free 
parameters; T, was essentially chosen on the basis of the variance of a random 
sample of E(x)‘s, and xT was chosen by trial and error. In the case of Fl, F2, and F3* 
the slow anneal at x7 = 0.99 was allowed to give way to a faster anneal at xT = 0.4 
when q = 10-l was reached, in order to avoid a needlessly slow local optimization 
within the domain of the minimum. 

Table II gives the results compared with other methods. The algorithm was 
independently repeated 100 times for each function, and the average number of 
function evaluations and average computer time (in units of 1000 evaluations of 
function Fl) are reported. Also shown is the probability of arrival at the global 
minimum using the present approach, based upon the sample of 100 runs. In all cases 
a local minimum was found. Even in the worst case, FI, the global minimum could 
be found with high certainty by running the program several times and choosing the 
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TABLE I 

Seven Standard Functions and Search Parameters Used in Their Minimization 

Function n Functional form” M To XT xs 'I 

F2 4 - r [Ix -a,(’ + ci]-’ 
i-=1 

60 0.5 0.996 3.0 IO-? 

60 0.5 0.996 3.0 1O-3 

F3 

F4 

60 0.5 0.996 3.0 10-l 
i s 1 

4 
- r ci exp[-r’ . Ai. x] 45 1.0 0.6 3.0 lo-’ 

t?, 

F5 6 
4 

~- r ci exp[-x7 Aj. x] 90 1.0 0.4 3.0 IO-’ 
i=l 

F6 2 

Fl 2 

a(~? - bx; + cxl -d)’ 

+ e( 1 -f) cos x, + e 

8 th-order polynomial 

in (x,, x2) 

30 20.0 0.1 3.0 1om3 

30 100.0 0.4 3.0 IO-’ 

’ For the values of the parameters in the functions see Ref. [4]. 
*xT was reduced at the later stages of the anneal; see text. 

TABL.E II 

Comparison of Efficiency of Global Minimization Algorithms, 
Giving the Number of Function Evaluations and Computer Time (in Units of 1000 Fl Evaluations), 

Respectively 

Function 
Search Search 
cluster’ clusterb 

Controlled 
random 
search’ 

- 
Fl 3679,‘lO 7085/19 3800/14 
F2 3606,‘13 6684,l23 4900120 
F3 3874,‘15 7352123 4400120 
F4 2584,‘8 6766117 240018 
F5 34471’16 11125/48 7600146 
F6 249914 149512 2500/3 
Fl 1558/4 1318/3 180014 

Bayesiand 
P Present P global 

function’ approach (?o) 

1174/- 620123 3910/16 54 
1279/- 788/20 3421/15 64 
1209/- 1160/30 3078115 81 
513/- 732/16 122414 100 

1232j- 807121 1914/12 62 
362/- 378115 557/l 100 
189/- 597114 1186/2 99 

Nore. The last column is the arrival probability for the global minimum using the present approach. 
a Ref. [6]. 
b Ref. [7]. 
‘Ref. [8]. 
’ Ref. [9]; computer times are unavailable for this case. 
e Ref. [IO]. 
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best minimum to arise. In general we find that the Monte Carlo annealing approach 
ranks fairly high among the known algorithms. The overhead costs (i.e., those 
unrelated to function evaluations) are low compared to other methods. 

It is interesting to note which functions give the most difficulty for the annealing 
approach. The functions Fl-F3 are difficult because the local minima are deep, 
highly isolated, and their depths are not apparent except in a small volume near the 
core of each minimum. The values of ci in Table I for the lowest minima are about 
0.2, while the search space is .xj E [0, lo], a volume Q = 10” [4]. In the vicinity of a 
minimum we can approximate 

and the accessible volume is about T’c”, so that a rou,gh model for the partition 
function is 

Z = T’c’ exp[ ~/CT] + R. (20) 

At temperatures T less than a critical temperature T,, energy considerations win and 
the “particle” sits in the minimum [i.e., the first term of Eq. (20) dominates], while at 
T > T, entropy wins and the particle wanders on the plateau. Equating the two terms 
in Eq. (20) gives T, ;2: 0.4 for the lowest minima. The sudden transition from the 
plateau to the minimum is reflected in a sharp cusp in C(T); Eq. (16) gives 
C(Tc) =: 100 and width AT% 0.03 fo this cusp. For T < T, the time constant for 
hopping between minima, r cc exp[ ~/CT], is so long that the hopping probability is 
negligible. Thus the algorithm does sometimes get trapped in local minima, as shown 
in Table II. The algorithm actually works better for the “more complicated” functions 
F2 and F3, presumably because the barriers between minima are reduced. 

In the case of the function F5, the problem is a competition between the global and 
lowest local minima, which are separated by AE of only -0.12 [4]. Moreover, the 
global minimum is much the narrower of the two (by a factor of - 16 in volume) so 
that not until T < O.l2/ln(16) z 0.04 will the global minimum be favored. At this 
temperature the hopping rate is again almost negligible, and trapping in the locai 
minimum can occur. 

The difference between an “easy” and a “difficult” function for the simulated 
annealing approach is illustrated in Fig. 2. The specific heat was calculated from 
Eq. (17) for F 1 and F4 by annealing over a wide temperature range using xr == 0.8. 
and the results averaged over 20 scans. (This may involve more work than needed for 
a single minimization, but it can be done once for a single representative of a class of 
problems.) We always find C -+ 0 as T + co and C z n/2 as T + 0 as expected for a 
hard-walled box and a quadratic minimum, respectively. We see signs of the sharp 
cusps in the specific heat for Fl, indicating that very slow annealing is necessary in 
the interval 0.1 < T < 0.5. For F4, on the other hand, we see only a gentle bump, and 
we can anneal through it quickly. 
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FIG. 2. Specific heat as a function of temperature as determined from an average over 20 anneals 
for (a) function Fl and (b) function F4. Note the difference in the vertical scales. 

In summary, we find that the Monte Carlo simulated annealing approach performs 
well for this class of multiextremal problems. In most cases we would suggest running 
the anneal more than once to reduce the chances of missing the global minimum; this 
reduces the efficiency somewhat. On the other hand, use of a better local optimizer in 
the later stages of the procedure could improve the performance. Perhaps the present 
approach could be integrated with other approaches, such as search clustering [6] or 
the simplex method [5], to improve the efficiency further. 

IV. APPLICATION TO FUNCTIONAL FITTING 

In this section, we illustrate the application of the Monte Carlo simulated 
annealing approach to a functional fitting problem. The specific example we will 
consider arose in the context of an LCAO (Linear Combination of Atomic Orbitals) 
electronic bandstructure calculation, but it is typicai of a wide variety of fitting 
problems. 

We shall suppose we are given a numerical radial function V(l), which in our case 
describes the potential energy of electrons a distance F- from the nucleus of an atom. 
In order to make use of analytic identities we would like to express V(r) as a sum of 
Gaussians: 

(21) 
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We ask for the best least-squares fit by minimizing the error E, with respect to a and 
c, with 

E,(c; a) =; wj V(rj) - : ciepuir: 
i=l 

The last term in Eq. (22) is an optional penalty function which can be used 10 
suppress large values of the linear coefficients. Equation (22) can easiy be minimized 
with respect to the linear coefficients ci using linear least-squares methods, so that we 
may think of E, = E,(a) with the optimal ci’s always inserted in Eq. (22). 

The choice of the optimal set of ai’s is a non-linear global optimization problem, 
and generally exhibits multiple local minima. We can, of course, just write a 
subroutine to evaluate E,(a) and implement our Monte Carlo annealing procedure 
with E = E, and x = CL To make the procedure somewhat more efficient and flexible, 
however, we make the following modifications. First, we define the objective function 
1”; for the Metropolis algorithm to be 

Because E, is positive definite, the replacement of E, by ln(E,) is natural, and it 
emphasizes the differences between the depths of competing local minima. Two 
additional optional penalty functions have been included. The first, whose importance 
is controlled by C,, can be used to suppress choices of a which deviate greatly from 
the initial guess. (The form has been chosen so that the penalty function is smali for 
1 In c( - In a”’ / < C; 1’6, but rises sharply outside this range; the sharpness is 
controlled by the exponent, which has been rather arbitrarily set to 6.) The second, 
controlled by C,, suppresses choices of a which are poorly even-tempered, i.e., which 
do not resemble a geometric series. Such penalty functions can play either of two 
roles: (i) they may reflect real optimization considerations [for example. very large 
values of the linear coefficients may make the evaluation of V&r) subject to 
numerical round-off error], or (ii) even if the penalty function is negligible in the 
vicinity of the minimum, it may inhibit the random walk from searching pointlessly 
in large volumes of parameter space corresponding to unreasonable solutions. 
Because the gradients of E(a) are not needed, such penalty functions are easily 
implemented. 

Finally, we make the transformation 

cfi = y exh 
h=l 

(24) 

and carry out the random walk in the space of xk’s, minimizing E(x). This orders the 
decay constants, insures that cases of close approach between an ai and ui+, are 
handled in a well-controlled fashion, and reduces the volume of phase space 

associated with unreasonably large decay constants. 

551,,‘56:‘2-7 
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FIG. 3. Fitting of pseudopotential v(r) to a sum of Gaussians. (a) Target function (solid line) and 
fit (dashed line) for n = 2. (b) Difference dY between target and fit for ,I= 2 and n = 4. 

Figure 3 shows the results of applying the Monte Carlo simulated annealing 
algorithm to such a problem. The numerical function to be fitted is the difference 
between the potential felt by s and p electrons in carbon, according to a 
pseudopotential generation scheme of Hamann et al. [ 111. We have used a uniform 
radial grid with dr = 0.1 a.u. to represent the function values, with uniform weights 
assigned to each grid point. The fitting parameters were C, = 2 x 10-6, C, = 0, 
C, = 0.02, T,, = 1, x, = 2, and xr = 0.8; these were chosen essentially by trial and 
error. The lit was carried out with n = 2, 4, and 8 decay constants, with the 
maximum fitting errors being 7 x lo-’ Ry, 9 X lop3 Ry, 7 x lOPA Ry, respectively. 
In order to get a good fit in the chemically important tail region, the n = 4 lit was 
adopted for later use. 

Finally, Table III shows that for n = 4 the objective function is indeed multiex- 

TABLE III 

Local Minima for n = 4 Fitting Problem, with Number of Arrivals (out of a Sample of 20) 
Given for Different Values of ,yr 

narr,,, for xr 

Min E a, a, a3 a4 0.2 0.4 0.6 0.8 

1 -6.033 8.93 3.76 3.14 2.72 14 13 18 19 
2 -4.464 33.45 2.20 1.77 1.68 2 4 1 1 
3 -3.937 2.57 1.39 1.07 0.90 4 3 1 0 
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tremal, with the three deepest local minima identified. Note that xr > 0.5 is needed to 
insure arrival at the global minimum with high probability. 

V. SUMMARY AND CONCLUSIONS 

We have shown how the Monte Carlo simulated annealing approach to discrete 
optimization may be equally well applied to optimization over continuous parameter 
spaces. The efficiency of this approach is enhanced by employing a self-regulatory 
mechanism which maintains a random step distribution appropriate to the Inca! 

topography and current temperature. The method is tested on a set of standard global 
optimization problems, and its performance is shown to be competitive with the best 
algorithms currently available. Finally, it is applied to a typical functional fitting 
problem of the sort which might arise in many branches of physics. 

While the method has not been carefully tested for large-dimensional systems 
(H 2 lo), we see no major obstacles to such an application. Physical applications of 
the Metropolis approach have long been applied to large-n systems, with n z 100 or 
more. 

In short, our preliminary experience with the Monte Carlo annealing approach to 
continuous global optimization is encouraging. With or without further development. 
it may prove to be the method of choice for many classes of problems. 
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